EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].

  G ψ = E ψ =  E [G+].... ..  =

G ψ = E ψ =  E [G+ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ μ / h/c ψ(xt)  [x  t ]..

q G*] ==G ψ = E ψ =  E [G+].... .. 

SISTEMA GRACELI DE:

 TENSOR G+ GRACELI = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO,  SISTEMA GRACELI DO INFINITO DIMENSIONAL.


ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI. 

q G*] = energia quântica Graceli.



Na física, o coeficiente de difusão ou difusividade de massa é um valor que representa a facilidade com que cada soluto em particular se move em um solvente determinado. É uma proporcionalidade constante entre o fluxo molar devido a difusão molecular e o gradiente na concentração de espécies (ou pela força condutora para a difusão). A difusividade é encontrada na lei de Fick e numerosas outras equações da físico-química, relacionadas com a difusão de matéria ou energia

É geralmente adequada para um dado par de espécies químicas. Para um sistema multicomponente, é recomendável para cada par de espécies no sistema.

Depende de três fatores:

Quanto maior a difusividade (de uma substância em relação à outra), mais rápido elas difundem-se uma na outra.

Este coeficiente tem unidades no SI de m²/s (comprimento²/tempo).

Dependência da temperatura do coeficiente de difusão

Tipicamente, o coeficiente de difusão de um composto é aproximadamente 10.000 vezes maior no ar que em água. Dióxido de carbono, por exemplo, no ar tem um coeficiente de difusão de 16 mm²/s, e em água seu coeficiente é 0,0016 mm²/s[1].

O coeficiente de difusão em sólidos a diferentes temperaturas é frequentemente encontrado e bem predito pela equação


/ G ψ = E ψ =  E [G+].... ..  

onde

  •  é o coeficiente de difusão
  •  é o coeficiente de difusão máximo (a temperatura infinita)
  •  é a energia de ativação para difusão em dimensões de [energia (quantidade de substância)−1]
  •  é a temperatura em unidades de [temperatura absoluta] (kelvins ou graus Rankine)
  •  é a constante dos gases em dimensões de [energia temperatura−1 (quantidade de substância)−1]

Uma equação desta forma é conhecida como a equação de Arrhenius.

Uma dependência aproximada do coeficiente de difusão da temperatura em líquidos pode frequentemente ser encontrado usando a equação de Stokes-Einstein, a qual prevê que:

 
/ G ψ = E ψ =  E [G+].... ..  

onde:

T1 e T2 denota temperaturas 1 e 2, respectivamente
D é o coeficiente de difusão (cm²/s)
T é a temperatura absoluta (K),
μ é a viscosidade dinâmica do solvente (Pa·s)

A dependência do coeficiente de difusão da temperatura para gases pode ser expressa usando-se a teoria de Chapman-Enskog (predições precisas na média em aproximadamentre 8%)[2]:

 
/ G ψ = E ψ =  E [G+].... ..  

onde:

  • 1 e 2 indexas os dois tipos de moléculas presentes na mistura gasosa
  • T – temperatura (K)
  • M – massa molar (g/mol)
  • p – pressão (atm)
  •  – o / G ψ = E ψ =  E [G+].... ..  diâmetro médio de colisão (os valores são tabulados[3]) (Å)
  • Ω – um integral de colisão dependente da temperatua (os valores são tabulados[3] mas usualmente de ordem 1) (adimensional).
  • D – coeficiente de difusão (o qual é expresso em cm2/s quando as outras magnitudes são expressas nas unidades dadas acima[2]).

Dependência da pressão do coeficiente de difusão

Para autodifusão em gases a duas pressões diferentes (mas a mesma temperatura), a seguinte equação empírica tem sido sugerida:[2]

 
/ G ψ = E ψ =  E [G+].... ..  

onde:

P1 e P2 denotam pressões 1 e 2, respectivamente
D é o coeficiente de difusão (m²/s)
ρ é a densidade mássica do gás (kg/m3)

Difusividade efetiva em meio poroso

O coeficiente de difusão efetiva[4] descreve a difusão através dos espaços dos poros de um meio poroso. Ele é macroscópico na natureza, porque não são poros individuais mas o espaço poroso inteiro que necessita ser considerado. O coeficiente de difusão efetiva para transporte através dos poros, De, é estimado como segue:

 
/ G ψ = E ψ =  E [G+].... ..  

onde:

  • D - coeficiente de difusão em gas ou líquido preenchendo os poros (m2s−1)
  • εt - porosidade disponível para o transporte (adimensional)
  • δ - constrictividade (adimensional)
  • τ - tortuosidade (adimensional)

Em física, o comprimento de onda térmico de Broglie é definido para um gás ideal livre de partículas mássicas em equilíbrio como:

/ G ψ = E ψ =  E [G+].... ..  

onde



concentração quântica nQ é a concentração de partícula (i.e. onúmero de partículas porunidade de volume) de um sistema onde a distância interpartícula é igual ao comprimento de onda térmico de de Broglie ou equivalentemente quando os comprimentos de onda das partículas são tangentes ("se tocam") mas não se sobrepõe.[1][2]

Efeitos quanticos tornam-se mais apreciáveis quando a concentração de partículas é maior ou igual que a concentração quântica, a qual é definida como:

 
/ G ψ = E ψ =  E [G+].... ..  
onde:
M é a massa das partículas no sistema
k é a constante de Boltzmann
T é a temperatura medida em kelvin
 é a constante de Planck reduzida

Como a concentração quântica depende da temperatura; altas temperaturas irão colocar a maioria dos sistemas no limite clássico sem estes terem uma densidade muito alta, e.g. como uma anã branca.





conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física.

Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade  de encontrá-lo num micro-estado particular  é dada por:

 
/ G ψ = E ψ =  E [G+].... ..  

sendo  a energia do microestado  e  a função de partição do sistema, definida por

 
/ G ψ = E ψ =  E [G+].... ..  

Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico.

Apresentação física do problema

Imagine-se que se tem um sistema físico em contacto com um banho térmico. Isto quer dizer que está em contacto com uma grande massa a uma temperatura dada, e pelo princípio zero da termodinâmica tenderemos portanto o sistema em equilíbrio termodinâmico com o banho. Nestas condições, a energia não está totalmente determinada, senão que é uma variável aleatória que pode tomar uma série de valores. Desta forma, só podemos falar de probabilidade de que o sistema adopte uma energia determinada em função desta temperatura.

O fator de Boltzmann

Demonstra-se que a probabilidade de que um sistema a temperatura T esteja numa configuração de energia E é proporcional ao fator de Boltzmann:

 
/ G ψ = E ψ =  E [G+].... ..  

onde

 é a probabilidade buscada
 é a energia cuja probabilidade se está a procura
 é a constante de Boltzmann
 é a temperatura.

A constante  não é mais que uma constante de normalização imposta para que a soma das probabilidades de todos os estados seja um. Define-se trivialmente como:

 
/ G ψ = E ψ =  E [G+].... ..  

onde  é um índice mudo que recorre todos os estados possíveis do sistema com um número de partículas, volume e temperatura dadas.

A função de partição canónica

A constante de normalização  recebe o nome de função de partição canónica ou simplesmente de função partição. Esta é uma função matemática da temperatura, em número de partículas e o volume. Pode-se demonstrar a fórmula seguinte, que relaciona a mecânica estatística com a termodinâmica no conjunto canónico:

 
/ G ψ = E ψ =  E [G+].... ..  

Esta equação nos dá a energia livre de Helmholtz do sistema (uma variável de estado termodinâmica) em função das suas variáveis naturais, o que supõe um conhecimento termodinâmico exaustivo do sistema. Portanto conhecer a função de partição é resolver o problema estatístico.



Em Mecânica estatística, um ensemble microcanônico é o conjunto estatístico que é usado para representar os possíveis estados de um sistema mecânico que tem uma energia total especificada. O sistema é assumido como isolado, no sentido que o sistema não pode trocar energia ou partículas com seu ambiente, assim o valor da energia total permanece fixo enquanto o tempo passa. A energia, volume, e composição do sistema são mantidas fixas em todos os estados possíveis do sistema.

As variáveis ​​macroscópicas do conjunto microcanônico são parâmetros físicos que influenciam a natureza dos estados internos do sistema, como o número total de partículas , o volume disponível , bem como a energia total . Em consequência, este conjunto é algumas vezes chamado de ensemble , pois cada um destes três parâmetros é uma constante no conjunto.

Em termos simples, o ensemble microcanônico é definido através da atribuição de uma probabilidade igual para cada microestado do sistema cuja energia cai dentro de um intervalo  e . Para todos os outros microestados se assume probabilidade igual a zero. Seja  a probabilidade de o sistema estar em um dado microestado  naquele intervalo de energia. O sistema deve estar em um dado microestado, logo

 . / G ψ = E ψ =  E [G+].... ..  

Se o número total de microestados com igual probabilidade é , então

 / G ψ = E ψ =  E [G+].... ..  

O intervalo de energia é, em seguida, reduzido em largura até que se torne infinitamente estreito, . No limite deste processo, obtém-se o conjunto microcanônico.

Na prática, o ensemble microcanônico não corresponde a uma situação experimentalmente realista. Para um sistema físico real, existe alguma incerteza na energia devido a fatores não controlados na preparação do sistema. Além da dificuldade de encontrar um análogo experimental, é difícil de realizar cálculos que satisfaçam exatamente o requisito de energia fixa. Sistemas em equilíbrio térmico com o ambiente têm incerteza na energia, e são melhor descritos usando o ensemble canônico ou o ensemble grande canônico.



Comentários

Postagens mais visitadas deste blog